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The self-force experienced by a semicircular conducting loop of circular cross section is evaluated analyti-
cally using the Lorentz force expression and shown to agree with the result of the partially analytical and
partially numerical calculations quoted in the paper of Cavalleri et al. �Phys. Rev. E 58, 2505 �1998��.
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In 1998 Cavalleri et al. published a paper �1� reporting the
results of an experiment made by them and regarding the
measurement of the self-force on a part of a circuit and due
to the whole circuit. The force calculated by standard elec-
trodynamics was found in agreement with the experimental
values �within the experimental errors�. They also pointed
out experimental and theoretical errors made by other au-
thors �2,3� who claimed disagreement between their experi-
ments and the standard theory. The point is that not only is
the experiment of a �usually weak� self-force delicate, but
also the theoretical calculation is difficult since it concerns a
sixfold integral whose integrand presents divergences. In or-
der to calculate the self-force, one uses integrals over a dis-
tributed continuous force density, thus having a divergent
integrand. That is why a Monte Carlo calculation is not con-
venient and practically does not converge. Consequently,
Cavalleri et al. �1�, after discussing other methods, suc-
ceeded in performing the analytical integration of one of the
six integrals in cascade and then imitated the average distri-
bution of the electrons �producing the current in the consid-
ered wire� that are equally spaced. They therefore divided the
ranges of the other five variables into equal parts and calcu-
lated the force on each point excluding the action of the
considered point on itself. For each number N of points for
the main variable �, they calculated numerically the fivefold
integral I. The plot of I vs N, shown in their Fig. 11, does not
reach an asymptotic value even for N=103 and for a total
number of the five variables, �4�1011, requiring 1 month at
full time of a PC for the last point. They therefore interpo-
lated I vs N in order to find the asymptotic value. Since some
uncertainty can arise in that procedure and in a reply to the
comment made by Assis �4�, Cavalleri and Tonni �5� have
pointed out that an analytical solution of the sixfold integral
would be worthwhile. In this paper we propose an analytical
solution to the paper of Cavalleri et al. �1�.

The results on the measurement of the self-force on a part
of a closed circuit for a rectangular � frame is available in
the literature �6,7�. For a rectangular � frame with rectangu-
lar cross section, the principal value of the diverging integral
exists �8�. For the radius of the cross section tending to zero,
the conductors of the � frame are assumed as line charges
and the upward self-force is shown analytically to be a sum
of infinite and finite values �6�. Moreover, for a � frame with
finite radius of cross section the self-force is shown analyti-
cally �9� to be a sum of infinite and finite values where the

finite value agrees with the experimental result �7�. The slow
increase in the value of the self-force with the decrease in the
value of the radius of the cross section is also correctly
brought out �9�. In the present work, the analytical result for
a circular cross section and axis shaped as a semicircular arc
is obtained and shown to be a sum of infinite and finite
values. The finite part agrees well with the result of �1�.

The Lorentz force between two current-carrying conduc-
tors is small, and hence the response is usually not consid-
ered. As a consequence of the Lorentz force, the electrons in
the conductor acquire a velocity, and if the force is not con-
stant, a deviation in the uniform electron concentration
arises. Subsequently a reaction force of Coulomb nature
comes into play. However, if the force itself is small, the
reaction is a second-order effect and can be neglected. In the
case of a semicircular current-carrying loop, the self-force
which is position dependent becomes the sum of infinite and
finite values. For the infinite part, the consequence of the
reaction force needs to be considered within an infinitesimal
amount of time. It is physically equivalent to the redistribu-
tion of electrons when numerous point charges are kept in a
free electron gas and the redistribution of electrons takes
place within an infinitesimal amount of time. A random mo-
tion of electrons is associated with the redistribution process,
and the net displacement of electrons along any direction is
zero. Hence it would not contribute to the experimental mea-
surement, which involves the displacement of electrons
along the x direction for the present case. If the finite part of
the force is large, then the calculation of the reaction force is
difficult. In this paper, to overcome this difficulty, two equa-
tions for the force FLx are generated and solved. The unique-
ness of the solution is also justified.

Considering two moving electrons with velocities v1
� and

v2
� , the Lorentz force experienced by electron 2 is written as

F� = −
ev2

� � �v1
� � E� �

c2 , �1�

where E� refers to the electric field. The x, y and z compo-

nents of E� , E1, E2, and E3 can be written as

E1 = −
e�x2 − x1�

r21
3 ,

E2 = −
e�y2 − y1�

r21
3 ,

*Electronic address: geethaajoy@vsnl.net

PHYSICAL REVIEW E 74, 067602 �2006�

1539-3755/2006/74�6�/067602�4� ©2006 The American Physical Society067602-1

http://dx.doi.org/10.1103/PhysRevE.74.067602


E3 = −
e�z2 − z1�

r21
3 ,

r21 = ��1
2 + �2

2 − 2�1�2 cos��1 − �2� + �z2 − z1�2�1/2. �2�

The total force experienced FL
� by conductor 2 is obtained by

summing F� over the coordinates of electrons 1 and 2 and the
summation can be replaced by an integration. The x and y
coordinates of electrons 1 and 2 in the semicircular conduct-
ing loop of Fig. 1 can be written as

x1 = �1 cos �1,

y1 = �1 sin �1,

x2 = �2 cos �2,

y2 = �2 sin �2. �3�

Here 14.3 cm��1�14.8 cm and 14.3 cm��2�14.8 cm
�1�. The maximum value of z1 and z2 at each �1 and �2 can be
written as

z1f = ��0
2 − ��1 − �c�2 = �0�1 −

��1 − �c�2

�0
2 − ¯ � ,

z2f = �0�1 −
��2 − �c�2

�0
2 − ¯ � , �4�

where �c=14.55 cm. The radius of the cross section of the
wire �0 is 0.25 cm.

The x component of the Lorentz force can be written as

FLx = −
e

c2 	 �E2v1xv2y − E1v1yv2y� , �5�

where v2x=
−i sin��2�

neA and v2y =
i cos��2�

neA . The area of cross
section A=��0.25�2. Here n and i are the electron concentra-
tion and current in the loop.

The force experienced by the electrons in the loop can be
evaluated by replacing the summation in Eq. �5� as an inte-
gration:

FLx =
n2e2

c2 
 �1d�1
 �2d�2
 dz2
 dz1

�
 d�2
 �E2v1xv2y − E1v1yv2y�d�1, �6�

with the limits of integration as below. Here − �
2 ��1

�
�
2 − �

2 ��2�
�
2 , 14.3 cm��1�14.8 cm, 14.3 cm��2

�14.8 cm, −z1f �z1�z1f, and −z2f �z2�z2f. The contribu-
tion from the term E1v1yv2y is zero as the orders of integra-
tion for the coordinates of electrons 1 and 2 can be inter-
changed. Hence

FLx = −
i2

A2c2 
 �2d�2
 �1d�1
 dz2
 dz1 �
 cos �2d�2

�
 ��2 sin �2 − �1 sin �1�sin �1

r21
3 d�1. �7�

The sixfold integrations are evaluated analytically as
below.

r21
3 can be expanded as a binomial series. In evaluating

the d�1 and d�2 integrals, the contribution from
��2 sin �2−�1 sin �1�sin �1 cos �2 and the terms of odd
powers of cos��1−�2� in the binomial series become zero.
Considering the terms of even powers of cos��1−�2� in the
binomial series, one can redefine FLx as

FLx =
�i2

2A2c2 
 �1
2d�1
 �2d�2
 cos �2d�2

�
 
 dz1dz2

��1
2 + �2

2 + 2�1�2 sin �2 + �z2 − z1�2�3/2 . �8�

One can write


 dz1

��1
2 + �2

2 + 2�1�2 sin �2 + �z2 − z1�2�3/2 =
z1 − z2

�1
2 + �2

2 + 2�1�2 sin �2

1

��1
2 + �2

2 + 2�1�2 sin �2 + �z2 − z1�2�1/2 . �9�

Hence, on performing the dz2 integration and applying the
limits for the dz1 and dz2 integrals, the right-hand side of Eq.
�9� becomes

� − 2

�1
2 + �2

2 + 2�1�2 sin �2
�

� 
���1
2 + �2

2 + 2�1�2 sin �2 + �z2f − z1f�2�

− ���1
2 + �2

2 + 2�1�2 sin �2 + �z2f + z1f�2�� .

Since
z1f

�1
and

z2f

�2
are very small, considering only the terms

containing �z1f +z2f�2 and �z1f −z2f�2, FLx can be written as

FLx =
2�i2

c2A2 
 
 �1
2�2z1fz2fd�1d�2

�
 cos �2

��1
2 + �2

2 + 2�1�2 sin �2�3/2d�2. �10�

After the d�2 integration one gets
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FLx =
4�i2

c2A2 
 d�2

14.3

�2 �1z1fz2f

��2 − �1�
d�1. �11�

Defining

�1 − �c = �0 sin �1,

�2 − �c = �0 sin �2, �12�

one can write

1

�2 − �1
=

1

�0�sin �2 − sin �1�
. �13�

Using Eq. �4� and the binomial series for 1
�2−�1

, the d�1 inte-
gral is evaluated. The limits of integration are from −1 to
sin−1� �2−�c

�0
�. The subsequent d�2 integral becomes tedious to

evaluate analytically.
Instead ��1

2+�2
2+2�1�2 sin �2�−3/2 can be written as a bi-

nomial series and the d�2 integration performed. The terms
having even powers of sin �2 alone contribute to the d�2

integral from − �
2 to �

2 . Two equations for FLx are generated
below and solved so that the finite part of FLx becomes small.
One can write


 cos �2

��1
2 + �2

2 + 2�1�2 sin �2�3/2d�2 =
1

��1
2 + �2

2�3/2S1,

where

S1 = 2�1 + 0.625x2 + 0.492x4 + 0.418x6

+ 0.370x8 + 0.33x10 + ¯ �

x =
2�1�2

�1
2 + �2

2 . �14�

x is less than unity. However, it is very nearly unity for all
values of �1 and �2. For �1=14.8 cm and �2=14.3 cm,
x=0.9994. Hence the series can also be written as

S1 = 2�1 + 0.625 + 0.492 + 0.418 + 0.370 + 0.33 + ¯ �

= 2�2.905 + 0.33
1

�1 − 0.9x�
+ S2� ,

where the series S2 is of the form

S2 = 0.011x + 0.0197x2 + 0.0285x3 + ¯ . �15�

S2 can be rewritten as

S2 = 0.011
1

�1 − x�2 + S3,

where

S3 = − �0.0023 + 0.0045x + 0.0065x2 + ¯ � = − 2.2966

− 	
n=0

m

�0.2183 + n0.0117�xn+29 + 0.0117�m − 30�xm−30

+ ¯ + 0.0117mxm + 0.2183�xm−30 + ¯ + xm� �16�

and m is 	
Hence

S1 = 5.8 + 2S�,

where

S� = 0.33
1

�1 − 0.9x�
+ 0.011

1

�1 − x�2 − 2.2966 − 	
n=0

m

�0.2183

+ n0.0117�xn+29 + 	
n=m−30

m

�0.2183 + n0.0117�xn. �17�

Similarly one can represent S� by a combination of differ-
ent terms as below:

S� = 0.33
1

�1 − 0.91x�
+ 0.008

1

�1 − x�2 − 1.3638 − 	
n=0

m

�0.1358

+ 0.0085n�xn+29 + 	
n=m−30

m

�0.1358 + n0.0085�xn. �18�

Using the standard relation for an algebric geometric pro-
gression �10�,

	
k=0

m−1

�a + kr�qk =
a − �a + �m − 1�r�qm

�1 − q�
+

rq�1 − qm−1�
�1 − q�2 ,

�19�

and Eqs. �17� and �18�, S� is evaluated. As x is very nearly
unity, the terms 1

�1−0.9x� and 1
�1−.0.91x� are practically constants

independent of �1 and �2. Multiplying Eq. �18� by 0.2183
0.1358 and

subtracting Eq. �17�, terms proportional to 1
�1−x� can be elimi-

nated. Hence

0.607S� = 2.687 +
0.0001

�1 − x�2 + 0.0019 	
n=m−30

m

nxn. �20�

Since
�1

2�2

��1
2+�2

2�3/2 is nearly 2−3/2, using Eqs. �10� and �14� one

can write

FLx =
2�i2

c2A223/2 
 S1z1fz2fd�1d�2. �21�

The contribution from the terms involving 1
�1−x�2 is evaluated

below, and the value of finite term is shown to be zero.

FIG. 1. Semicircular loop and axis convention.
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Substituting 1
�1−x�2 =

��1
2+�2

2�4

��2−�1�4 and defining �1−�c=�0 sin �1, one

gets


 
 1

��2 − �1�4z1fz2fd�1d�2

=
 ��0
2 − ��2 − �c�2d�2 �
 �0

2 cos2 �1

��2 − �c − �0 sin �1�4d�1,

�22�

with the limits − �
2 ��1�sin−1� �2−�c

�0
� and 14.3cm��2

�14.8 cm. For �2
�1,

1

��2 − �c − �0 sin �1�4 =
1

��2 − �c�4�1 +
4�0 sin �1

��2 − �c�
+ ¯ � .

�23�

cos2�1 can be written as
1+cos 2�1

2 . The contribution from the
cos 2�1 term after evaluating the d�1 integral in Eq. �22�
either becomes zero or proportional to odd powers of

��2−�c�

�0
.

As the limits of �2−�c are from −0.25 to 0.25, the value of
the integrals becomes zero. Similarly considering 1

2 in
cos2�1, the contribution from the terms of odd powers of
sin �1 on the right-hand side of Eq. �23� becomes zero. The
terms of even powers of sin �1 in Eq. �23� after d�1 integra-
tion reduce to integrals of the form



−�/2

�/2 cos2 �2

sin2n �2
d�2,

where �2−�c=�0 sin �2 and n is greater than unity. The prin-
cipal value of the integral at �2=0 is infinity. However, the
value of the integral at the upper and lower limits is zero
�10�. For �1 greater than �2, the order of d�1 and d�2 inte-
grations can be interchanged and the same result holds good.
Hence the value of finite term is zero and in Eq. �20� the term
proportional to 1

�1−x�2 can be neglected.

Moreover, as m is infinity the terms involving 0.0117�m
−30�xm−30+ ¯ +0.0117mxm and 0.0085�m−30�xm−30+ ¯

+0.0085mxm can be taken as infinity. Considering only the
finite term, one gets

0.607S� = 2.687. �24�

Hence S� and S1 become 4.42 and 14.6, respectively.

It may appear that S� can be evaluated directly using Eqs.
�17� and �18�, but it is less accurate as explained below.
Using steps similar to Eqs. �22� and �23�, the contribution
from the 1

�1−x� term is proportional to the integral



−�/2

�/2 cos2 �2

sin2 �2
�1 +

3

2 sin2 �2
+

15

8 sin2 �2
+

35

16 sin2 �2
�d�2.

�25�

The principal value of the integral at �2=0 is infinity.
However, the value of the integral



−�/2

�/2 cos2 �2

sin2 �2
d�2

at the upper and lower limits is finite. One gets S� as approxi-
mately equal to 1000. As the force becomes a large finite
value, the evaluation of the reaction force becomes less ac-
curate. The uniqueness of the solution is justified below.

One can generate many equations similar to Eqs. �17� and
�18� by changing the terms 1

1−0.9x and 1
1−0.91x and solving any

two of them to obtain the value of S�. As an example two
equations corresponding to 1

1−0.8x , 1
1−0.9x and 1

1−0.88x , 1
1−0.91x are

solved and the values of S� are also obtained nearly as 4.4,
thus justifying the uniqueness of the solutions.

Using Eq. �21� and substituting S1 as 14.6, one can write

FLx =
29.2�i2

c2A223/2 
 
 z1fz2fd�1d�2. �26�

Using Eqs. �4� with the limits − �
2 ��1�

�
2 , − �

2 ��2�
�
2 , and

substituting A=��0.25�2, one gets

FLx =
29.2�0.25�4�i2

c2A223/2 
 
 cos2 �1 cos2 �2d�1d�2 =
8.1i2

c2 .

�27�

One can also put forward an alternate method of solution
based on elliptic integrals for the self-force on a semicircular
conducting loop without using the simplification in Eq. �8�
and obtain the finite part of the force as 9.2i2

c2 �9�.
The results show agreement with the value 8.8i2

c2 of �1�.
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